6,107 research outputs found

    Prioritized Data Compression using Wavelets

    Full text link
    The volume of data and the velocity with which it is being generated by com- putational experiments on high performance computing (HPC) systems is quickly outpacing our ability to effectively store this information in its full fidelity. There- fore, it is critically important to identify and study compression methodologies that retain as much information as possible, particularly in the most salient regions of the simulation space. In this paper, we cast this in terms of a general decision-theoretic problem and discuss a wavelet-based compression strategy for its solution. We pro- vide a heuristic argument as justification and illustrate our methodology on several examples. Finally, we will discuss how our proposed methodology may be utilized in an HPC environment on large-scale computational experiments

    Characterization of Ground Nozzles for Pesticide Applications

    Get PDF
    Pesticide applications are a common component of crop production systems in the United States (US). For row crop systems (e.g. corn, soybean, or wheat), pesticides are applied by ground, aerial, or chemigation methods. The exact method of pesticide delivery is not universally regulated/ prescribed in the US, and the equipment and application technique are largely defined by the individual applicator. A wide variety of choices and decisions must be made by applicators to result in a successful pesticide application. Examples of these choices include proper active ingredient(s), carrier volume and equipment (e.g. nozzle type, spacing, and operating pressure) selection while also considering environmental influences such as wind speed and temperature. However, applicators are often limited in guidance on making successful applications, and this can result in off-target movement of the pesticide(s) causing unintentional injury to vegetation, environmental contamination, and/or human exposure. This has prompted several state and federal agencies to monitor pesticide applications and development strategies or programs to reduce off-target movements of pesticides. The objectives of the current research were to 1) incorporate and expand upon the US Environmental Protection Agency (EPA) drift reduction technology (DRT) guidelines using a wind tunnel laboratory, 2) characterize the droplet size, velocity, pattern uniformity, and drift potential of commonly used application nozzles for ground systems in the US, and 3) bridge laboratory and field studies in pesticide application technology using established and new methodologies. The data from this research aided in the development of a robust application technology program within the University of Nebraska and advanced the EPA DRT guidelines for wind tunnel testing of pesticides. Furthermore, the data demonstrated the impacts of ground nozzle selection upon the drift potential of new and existing herbicides in the US. The methods and equipment utilized in this research will be beneficial to researchers in application technology and can serve as a foundation for future experiments. Advisor: Greg R. Kruge

    Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.

    Get PDF
    Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, Ī±-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation

    Evaluation of a Pound Net Leader Designed to Reduce Sea Turtle Bycatch

    Get PDF
    Offshore pound net leaders in the southern portion of Chesapeake Bay in Virginia waters were documented to incidentally take protected loggerhead, Caretta caretta, and Kempā€™s ridley, Lepidochelys kempii, sea turtles. Because of these losses, NOAAā€™s National Marine Fisheries Service (NMFS) in 2004 closed the area to offshore pound net leaders annually from 6 May to 15 July and initiated a study of an experimental leader design that replaced the top two-thirds of the traditional mesh panel leader with vertical ropes (0.95 cm) spaced 61 cm apart. This experimental leader was tested on four pound net sites on the eastern shore of Chesapeake Bay in 2004 and 2005. During the 2 trial periods, 21 loggerhead and Kempā€™s ridley sea turtles were found interacting with the control leader and 1 leatherback turtle, Dermochelys coriacea, was found interacting with the experimental leader. Results of a negative binomial regression analysis comparing the two leader designs found the experimental leader significantly reduced sea turtle interactions (p=0.03). Finfish were sampled from the pound nets in the study to assess finfish catch performance differences between the two leader designs. Although the conclusions from this element of the experiment are not robust, paired t-test and Wilcoxon signed rank test results determined no significant harvest weight difference between the two leaders. Kolmogorov-Smirnov tests did not reveal any substantive size selectivity differences between the two leaders

    Characterization of Ground Nozzles for Pesticide Applications

    Get PDF
    Pesticide applications are a common component of crop production systems in the United States (US). For row crop systems (e.g. corn, soybean, or wheat), pesticides are applied by ground, aerial, or chemigation methods. The exact method of pesticide delivery is not universally regulated/ prescribed in the US, and the equipment and application technique are largely defined by the individual applicator. A wide variety of choices and decisions must be made by applicators to result in a successful pesticide application. Examples of these choices include proper active ingredient(s), carrier volume and equipment (e.g. nozzle type, spacing, and operating pressure) selection while also considering environmental influences such as wind speed and temperature. However, applicators are often limited in guidance on making successful applications, and this can result in off-target movement of the pesticide(s) causing unintentional injury to vegetation, environmental contamination, and/or human exposure. This has prompted several state and federal agencies to monitor pesticide applications and development strategies or programs to reduce off-target movements of pesticides. The objectives of the current research were to 1) incorporate and expand upon the US Environmental Protection Agency (EPA) drift reduction technology (DRT) guidelines using a wind tunnel laboratory, 2) characterize the droplet size, velocity, pattern uniformity, and drift potential of commonly used application nozzles for ground systems in the US, and 3) bridge laboratory and field studies in pesticide application technology using established and new methodologies. The data from this research aided in the development of a robust application technology program within the University of Nebraska and advanced the EPA DRT guidelines for wind tunnel testing of pesticides. Furthermore, the data demonstrated the impacts of ground nozzle selection upon the drift potential of new and existing herbicides in the US. The methods and equipment utilized in this research will be beneficial to researchers in application technology and can serve as a foundation for future experiments. Advisor: Greg R. Kruge

    Transforming the U.S. Global Defense Posture

    Get PDF
    The security environment at the start of the twenty-first century is perhaps the most uncertain it has been in the history of the United States. What strategic realities are driving the transformation of American global defense posture to contend with that uncertainty, and what changes is the Department of Defense working to bring about in relationships and capabilities around the world

    The Pan American (2000-03-21)

    Get PDF
    https://scholarworks.utrgv.edu/panamerican/1060/thumbnail.jp

    The Pan American (2000-04-18)

    Get PDF
    https://scholarworks.utrgv.edu/panamerican/1067/thumbnail.jp
    • ā€¦
    corecore